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Abstract

The feasibility of sintering PZT powder compactsÐ
by direct MW heating, in multimode applicators at
2.45GHzÐwas examined. Continuous heating from
20�C to sintering temperatures proved possible. Full
sintering was achieved after heating cycles of about
1 h. PbO loss and electromagnetic ®elds intensity
non-uniform spatial distribution are the main factors
with negative in¯uence on sintering. Cracking-war-
page propensity is a strong function of specimens
shape, size and the heating chamber set up. Dielec-
tric and piezoelectric properties of MW and con-
ventionally sintered specimens are similar. # 1999
Elsevier Science Limited. All rights reserved
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1 Introduction

Due to potential bene®tsÐlike sintering rate
enhancement and microstructural re®nementÐsin-
tering based on the material's interaction with
microwaves (MW) is currently examined for a wide
variety of ceramics, (Refs 1±4). For the case of
PZT, MW sintering was studied only in `high' fre-
quency, �>25GHz, gyrotron powered furnaces,
not practically usable.5,6 The only previous study
performed in systems operating at 2.45GHzÐsui-
table for industrial applicationsÐused sintered
PZT containers for the specimens so that a hybrid
heating (thermal radiation from the container and
autoheating of the specimens) took place Ref. 7.
The shielding e�ect of such containers markedly
reduces the direct MW/specimen interaction.
In this work the sintering of PZTÐbased on the

heat developed by its interaction with 2.45GHz
electromagnetic waves, in multimode applicatorsÐ

is examined. Aspects investigated include optimi-
zation of heating system set up and forward power
pro®les, determination of maximal densi®cation
levels, in¯uence of SiC susceptor on temperature
distribution, comparison of MW and con-
ventionally sintered specimens regarding their den-
sity and piezoelectric characteristics.

2 Experimental

In most of the experiments a commercial soft PZT
(PZT-S), ®ne powder [mean particle size
(dp)�1.1�m; doped with Sb, Sn; Tc=190�C] was
used. A hard PZT (PZT-H) material (dp=3.2�m;
doped with Sr, Fe; Tc=325�C), was also examined.
Specimens of various shape and size (maximal
plate length=50mm) were formed by cold isostatic
pressing at 200MPa.
MW sintering was performed in a custom made

2.45GHz furnace (model 101 of MMT, USA),
powered by two magnetrons, having a large size
applicator and mode stirrer (®eld uniformity
enhancement). Computer programming of forward
power or temperature-time pro®le is possible. An
S-type, Pt/6% Rh sheathed, thermocouple was
used for temperature measurements. The thermo-
couple, inserted in a sintered alumina tube, was put
in contact with the specimens.
Poling of silver electroded specimens was done

under a 2kV mmÿ1 ®eld at 120�C, in silicon oil for
20min. Small signal properties were measured in con-
formity with the IEEE standard on piezoelectricity.

3 Results and Discussion

3.1 MW/PZT interaction
Low loss materials like alumina could be directly
MW heated only at �>25GHz.2 The high dielec-
tric loss of PZTs (for PZT-S "r

00�40) allows better
coupling to the MW ®elds so that fast direct heat-
ing (without susceptors) from room temperature
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should be possible also at 2.45GHz. Preliminary
tests showed that, indeed, such a sintering
approach may be applied to PZT. The drop of "0r
at the transition from ferro to paraelectric state
(the Curie temperature for PZT-S was Tc=195�C)
did not in¯uence the heating process. Tempera-
tures in the 1300±1400�C domain were easily
attained. Not even the heating rate was modi®ed
around Tc. Probably the reduction of loss due to
polarization processesÐstronger in the ferro-
electric stateÐis compensated by the increase in
electrical conductivity with temperature (at 300�C
pure PZT exhibits an electrical conductivity
(�e)�10ÿ4 Smÿ1 compared to �e�10ÿ10 Smÿ1 at
20�C).8

The temperature pro®les recorded during the
MW sintering of both a soft and a hard PZT are
presented in Fig. 1.
For a given forward power pro®le the hard PZT

heats quicker than the soft one despite the lower
ferroelectric-state-polarization related loss in the
former. The higher electric conductivity of the hard
materials may explain this behaviour.8

The penetration depth of the 2.45GHz wave in
PZT-S, at room temperature, is Dp�16mm. Cal-
culation of Dp was made according to Ref. 9,
assuming energy transfer from ®eld to specimens
due only to polarization processes. The obtained
value means that one may expect, at least for cm
size specimens, relatively uniform ®eld distribution
within the specimen in the ®rst stage of sintering,
until signi®cant open porosity is present (if poros-
ity is uniformly distributed). Further heat distribu-
tion enhancement, during this stage, comes from
the Meek e�ect.10 On the other hand, in the last
stage of sintering only the external region of the
specimen is directly heated. As a result, tempera-
ture gradientsÐover the specimenÐincrease.

3.2 PZT MW-sintering process
In order to obtain fast heating to sintering tem-
peraturesÐwithout thermal runawayÐtarget PZT
load's mass and architecture had to be correlated
with forward power time pro®le. In the set up used
here the minimal sinterable mass was �20 g. Fur-
ther reduction of specimen mass could not be
achieved by increasing forward power level.
Arrangement of specimens set and `heating cham-
ber' con®guration had also to prevent massive PbO
loss. The evolvement of PbO from the PZT lattice,
during heating, is more intense in the MW than in
resistive furnaces. After a one hour sintering cycle
PbO deposits were present in various regions of the
heating chamber when an unsuitable set up was
used; 4%PbO was detected in the m-ZrO2 setter. In
the optimal con®guration this value decreased to
�1%. In Fig. 2 the X-ray di�raction pattern
(XRD) of specimens sintered in optimal and
unsuitable con®gurations are compared. Only in
the former case the densi®ed components are single
phase PZT. Otherwise various degrees of PZT's
decomposition occurred. An extreme case is shown
in Fig. 2(B). In that case only PbTiO3 and m-ZrO2

remained in the ®red pieces.
The optimal heating chamber set up included

multicolumnar specimen stacks, seated on pure
zirconia coarse powder, placed inside a sintered
alumina crucible (bottom up). Two other larger
crucibles were placed over the ®rst one, with Pb
zirconate grog put in-between the crucibles walls.
Further thermal insulation was provided by bubble
alumina and porous alumina tiles. The presence of
the thermocouple contributed in many cases to the
lowering of electromagnetic ®eld distribution uni-
formity (as judged from the spatial distribution of
cracks in the specimens set).

3.3 Sintered specimens characteristics
The densi®cation level and the value of the dielec-
tric and piezoelectric coe�cients of MW and con-
ventionally sintered specimens are given in Table 1.

Fig. 1. Forward (and re¯ected) MW power and resulting
temperature±time pro®les recorded during the sintering of

PZT-S,H.

Fig. 2. XRD pattern of MW sintered PZT-S specimens: (A)
optimal heating chamber set up; (B) unsuitable architecture of

specimens set. * PZT, & ZrO2, x PbTiO3.
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Sintered bulk densities, similar to those obtained
in industrial furances (see Table 1), were achieved,
in the case of PZT-S, by MW sintering. While peak
temperatures required were in the same range as in
the case of conventional heating, overall ®ring cycle
length wasÐin the case of MW heatingÐonly one
tenth of that needed in the resistive furnace.
The microstructure of the MW ®red components

(PZT-S) is ®ner, with a mean grain size equaling
dg&2.5�m compared to dg=4.3�m (abnormal
size grains included) in the case of conventionally
®red ones. In Fig. 3 electron microscope (SEM)
pictures of both MW and conventionally ®red spe-
cimens are presented.
The cracking-warpage propensity (C-W-P) of

MWed specimens showed a strong dependence on
their size and shape and specimens set architecture.
Isometric shapes and small size increased the yield
in uncracked sintered bodies. For instance, in the
case of PZT-S, 12.5mm cubes (®red in sets of 27
pieces) showed a yield of 45%, cylinders [diameter
(�)=10mm, height (h)=14mm] a yield of 30%. In
the case of discs (�=25mm, h=6mm) the yield
dropped to 10%, while 40 to 50mm length plates
could not be obtained without cracks. The yields

mentioned above were obtained in `blind' runs
without thermocouple inserted in the heating box.
A further improvement of heat distribution uni-
formityÐwhich translated in a 5±10% increase in
uncracked specimens yieldÐwas obtained by
introducing a suitable mass of coarse �-SiC, in
particulate form. It was placed between the second
and third alumina containers. Such a susceptor
form contributes to temperature gradient reduction
without markedly shielding the specimens from the
MW ®elds. The ®red bulk density is, though,
somewhat lower when susceptor is used.
The C-W-P of PZT-H was noticeably higher

than that of PZT-S.
Unlike in the case of,7 but in accord with,6 the

dielectric and piezoelectric properties of MW and
conventionally sintered specimens were similar (see
Table 1).

4 Conclusions

Fast sintering of PZT powder compacts is feasible
by direct MW heating, starting from room tem-
perature, in multimode applicators at 2.45GHz.

Table 1. Characteristics of MW and conventionally sintered PZTs

Properties Microwave sintering Conventional sintering

Experimental (ICSI) Experimental (ICSI) Catalog data

PZT-S PZT-H PZT-S PZT-H PZT-S PZT-H

Sintering temperature/time (�C/h) 1250/0 1290/0 1270/1.5 1320/4 Ð Ð
Bulk density (g cmÿ3) 7.54±7.60 7.17±7.26 7.50 7.56 7.50 7.60
Water absorption (%) 0.02-0.01 0.2-0.7 0.04 0.002 Ð Ð
"r before poling 2400 1050 2300 1000 Ð Ð
"r
T
3 3170 Ð 3120 780 3400 1000

tan � 0.021 Ð 0.021 0.0045 0.020 0.003
Kp 0.595 Ð 0.600 0.537 0.650 0.500
d31(�10ÿ12m/V) 230 Ð 250 Ð 270 120

Fig. 3. Microstructure of sintered PZT-S specimens. SEM pictures: (A) MW sintered; (B) sintered in conventional furnace.
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Densi®cation levels obtainable are similar to those
achieved in conventional furnaces after much
longer heating cycles. Suitable heating set ups are
essential for successful densi®cation and obtainment
of reasonable yields in uncracked components.
Dielectric and piezoelectric characteristics of MW
and conventionally sintered specimens are similar.
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